ESRI/ NAEP Virtual Webinar

November 16, 2021

Maryland Department Of Transportation State Highway Administration

Aaryland Department of Transportation State Highway Administration Climate Change Resilience Strategy

Incorporating Risk and Resilience with GIS at MDOT

Toria Lassiter Assistant Division Chief Office of Planning and Preliminary Engineering

Maryland Department of Transportation | State Highway Administration

MDOT SHA Transportation infrastructure at risk to Extreme Weather and Climate Change including, increased flooding related to rising sea levels, increases in the occurrence of heavy precipitation events, and increased rainfall intensity:

- Coastal areas: Expected to experience dramatic increases in tidal flooding.
 - 0.8-1.6 ft sea level rise from 2000 to 2050; 2-4 ft through 2100
- Inland: Projected 11-18% increase in the amount of rain associated with the 10% annual chance 24-hr precipitation event (around Baltimore)

CLIMATE CHANGE IN MARYLAND

- MDOT SHA Climate Risk and Resiliency Program
 - Facilitates compliance with State and Federal requirements
 - Develops data and tools
 - Coordinates with stakeholders to implement processes and policies that minimize climates risks and optimize the maintenance of our assets
- State and federal policymakers are increasingly requiring MDOT SHA to take action, including:
 - "Coast Smart" siting & design criteria for new construction of structures or highway facilities.
 - Federal Regulation 25 CFR parts 515 and 667
 - 2015 Fixing America's Surface Transportation (FAST) Act

MDOT SHA CLIMATE RISK AND RESILIENCE PROGRAM

- Vulnerability Assessments
 - Bridge Vulnerability
 - Roadway Vulnerability
 - Corridor Vulnerability Pilot
- Transportation Network Criticality using GIS methodology

MDOT SHA ANALYSES

- 33 of 8,588 structures evaluated are highly vulnerable to sea level change.
- 172 of 8,588 structures evaluated are highly vulnerable to storm surge.
- 102 of 8,588 structures evaluated are highly vulnerable to precipitation change.
- Assets with high vulnerability to sea level change and storm surge are concentrated in Districts on the eastern shore of Maryland and on the bay.
- Assets with high vulnerability to precipitation change are spread across all Districts, with the highest concentration in Districts inland.

Bridge Vulnerability Assessment using VAST Tool

BRIDGE VULNERABILITY ASSESSMENT

- Nearly 100 miles of roadway is expected to be permanently inundated by 2050, mostly in Dorchester and Somerset counties.
- The numbers are even higher if you look at the amount of roadway that would be flooded at high tide (aka Mean Higher High Water). There, we go from nearly 5 miles flooded at high tide today statewide, to over 290 miles by 2050. That's a nearly 60-fold increase

Roadway Vulnerability Assessment – Hazard Vulnerability Index (HVI)

ROADWAY VULNERABILITY ASSESSMENT

Critica	ality Criteri	a	Critic	ality Facto	or		
		AADT					
Use and Operational		AASH	AASHTO Functional Class				
		Acces	Access to public transportation				
		Freigh	nt tonnage /l	Freight Reve	enue	MDOI	SHA State Roadway Criticality
Socioecor	nomic	Touris	Tourism Revenue				
		Signif	icant tourisn	n destination	าร	152	
		Proxir	nity to hospi	tals, Emerg	ency	55	
		opera	operations				
Health an	nd Safety	Social	Social Vulnerability Index (SOVI)				Criticality
		Under	Underserved population accessibility				
						H	- Medium
	1	2	3	4	5	1	
	Very Low	Low	Moderate	High	Very High	Weight	
	Impact	Impact	Impact	Impact	Impact	Weight	
AADT	0 - 3.624	3.625 - 9.310	9.311 - 19.101	9.312 - 38.271	38.272- 267.232	30.0%	The second se
F 1							Study Area MD 450 / US 50
Class	Minor Collector	Major Collector	Minor Arterial	Major Arterial	Interstate	30.0%	Contraction of Street of Street
Freight							35 70 Miles
(1,000 tons)	0	1 - 102	103 -712	713 – 7,688	7,689 – 69,064	20.0%	
SoVI	(-6.55) - (-5.66)	(-5.65) - (-3.06)	(-3.05) - (-1.91)	(-1.40) - (0.44)	(0.45) - (3.97)	10.0%	
Redundancy	13 - 24	9 - 12	7 - 8	5 - 6	1 - 4	10.0%	

CORRIDOR RISK ASSESSMENT AND

CRITICALITY

MDOT SHA ESRGC NOAA Tidal Datums

표 🚳 🙈 🔚 🕥 🛸 👅 🚍

MDOT SHA ESRGC NOAA Tidal Datums

0

≈ x

QZ

The

Key Findings for Roadway Inundation SHA has modeled roadway inundation under various flooding scenarios to pre-emptively identify

roads to aid decision-making.

Layers

Q

▶ 🔽 Hurricane Florence Model - Roadway Inundation 🚥

Hurricane Florence Model - Inundated Parcels

ex Th or	e va Co	sive over time d ast majority of fl unty maintained Total Miles of Ro	ue to sea le ood risks a i roads. adway Floo	evel change cross all sc	e (see table) enarios are	 exposed to a 25-year flood event b 2050 (ranging from moderate to high flood risk). 89.0 miles are County maintained roads.
			2015	2050 % Change		The one roadway segment with
Annual Evendance		No Storm	0	67.6	-	high risk of at least two feet of
	8	10% (10-YR)	175.5	271.4	55%	flooding during a 25-year storm
	da l	4% (25-YR) 2% (50-YR)	175.5	271.4	55%	event by 2050 is MD 355.
	60		209.6	287.7	37%	-
	â	1% (100-YR)	220.1	291.4	32%	
		0.2% (500-YR)	247.8	303.0	22%	

Total miles inundated under various flooding scenarios, by road ownership: 2015 vs 2050

Potential Climate Risk and Resilience Next Steps

Expand local, regional, and state agency partnerships to develop a plan to reduce flood risk to critical infrastructure (e.g., asset-specific strategies, land use planning strategies, or watershed/coastal management strategies).

Across Scenarios

Flooding is expected to become more frequent and

- Conduct studies (e.g., risk analysis, vulnerability assessments) to understand the root cause of repeat flooding at specific locations.
- Use flood risk data to enhance emergency management planning efforts (e.g., detour routes).

Track flooding impacts and associated costs. Identify criteria (e.g., frequency of flooding impacts) to indicate the need for transitioning from maintenance and emergency response to capital improvement

Additional Information: Additional data and maps area available in

Top Risks: 25-Year Storm (Map) 104.7 miles of roads are potentially

the MDOT SHA Climate Change Viewer at: e8h948a5403a7030 Eastern Shore Regional GIS Cooperative Hazard Vulnerability Index Data Products. https://geoservices.salisbury.edu/arcgis/rest/ Eastern Shore Regional GIS Cooperative, 2016. GIS Data Products to Support Climate

Change Adaptation Planning: Dorchester County, Maryland. https://www.esrgc.org/data/flooding (go to Sea Level Change drop down and select

desired County)

MDOT SHA Climate Change Vulnerability

MDOT SHA ESRGC NOAA Tidal Datums

⊟ ☎ 📟 🟯 🔙 🥏 🔰 Ξ

Toria Lassiter, Assistant Chief

Innovative Planning and Performance DivisionOffice of Planning and Preliminary EngineeringMDOT State Highway Administration(O) 410-545-5731

tlassiter@mdot.maryland.gov

Jessica Shearer, Consultant Climate Risk and Resilience Program Manager

- Innovative Planning and Performance Division
- Office of Planning and Preliminary Engineering
- MDOT State Highway Administration
- (0) 410-545-5656
- jshearer@mdot.maryland.gov

