# MnDOT Extreme Flood Vulnerability Analysis

Chris Dorney, WSP

NAEP November Webinar November 16, 2021

### **Presentation Overview**

- Context & project goal
- Exposure analysis
- Risk calculations



## Geographic Scale of the Analysis

Systems-level vulnerability assessment

An analysis to determine the degree to which a transportation <u>system</u> is susceptible to, or unable to cope with adverse effects of climate change and/or extreme weather events

Project-level adaptation assessment An analysis of the vulnerability of a transportation asset/project to climate change and/or extreme weather events and, if found to be vulnerable, the development and evaluation of adaptation alternatives

## Systems-Level Analysis Approaches

#### Stakeholder Input

|  | Impact        |            |         |          |             |        |  |
|--|---------------|------------|---------|----------|-------------|--------|--|
|  |               | Negligible | Minor   | Moderate | Significant | Severe |  |
|  | Very Likely   | Low Med    | Medium  | Med Hi   | High        | High   |  |
|  | Likely        | Low        | Low Med | Medium   | Med Hi      | High   |  |
|  | Possible      | Low        | Low Med | Medium   | Med Hi      | Med Hi |  |
|  | Unlikely      | Low        | Low Med | Low Med  | Medium      | Med Hi |  |
|  | Very Unlikely | Low        | Low     | Low Med  | Medium      | Medium |  |



Flash Flood Vulnerability and Adaptation Assessment Pilot Project (2014)

### **Quantitative Risk**



### Indicators-Based Systems-Level Analysis (2014)









Exposure

Bridges

Large culverts

Pipes

Stream velocity

Roads

Calculate the Vulnerability Ratings for Each Asset (o = least vulnerable, 100 = most vulnerable)

Adaptive Capacity

Capacity to handle higher flows

• Percent change in peak design flow required for overtopping (based on StreamStats)

Sensitivity

Asset condition

Pavement condition (roads)

Scour rating (bridges)

• Substructure condition (bridges)

- Channel condition (bridges and large culverts)
- Culvert condition (large culverts)
- Pipe condition (pipes)

Previous flooding issues Belt width to span length ratio (bridges, large

culverts, pipes)

Belt width to floodplain width ratio (roads)

Percent of total roadway length parallel to the floodplain at risk of erosion from the stream channel (roads)

Percent forest land cover in drainage area (bridges, large culverts, pipes)

Percent drainage area not covered by lakes & wetlands (storage capacity)

Percent urban land cover in drainage area

• Average annual daily traffic (AADT) • Heavy commercial average daily traffic

(HCADT)

Detour length

Flow control regime (bridges, large culverts, and pipes)





## Systems-Level Analysis Approaches

#### Stakeholder Input

|          | Impact        |                  |         |          |             |        |  |  |  |
|----------|---------------|------------------|---------|----------|-------------|--------|--|--|--|
|          |               | Negligible Minor |         | Moderate | Significant | Severe |  |  |  |
| kelihood | Very Likely   | Low Med          | Medium  | Med Hi   | High        | High   |  |  |  |
|          | Likely        | Low              | Low Med | Medium   | Med Hi      | High   |  |  |  |
|          | Possible      | Low              | Low Med | Medium   | Med Hi      | Med Hi |  |  |  |
|          | Unlikely      | Low              | Low Med | Low Med  | Medium      | Med Hi |  |  |  |
|          | Very Unlikely | Low              | Low     | Low Med  | Medium      | Medium |  |  |  |



### Quantitative Risk



Extreme Flood Vulnerability Assessment (Ongoing)

## **Quantitative Risk Approach**

- Calculates expected costs (risk) to assets from climate stressors if no adaptation actions are taken
- Costs estimates may include
  - Damage and repair costs
  - Costs to system users
- Advantages over the indicators approach
  - Links between hazard, impact, and consequences are explicit (less "fuzzy")
  - More relatable & actionable to DOT engineers (helps with internal buy-in)
  - \$ based outputs are more relatable to policy-makers (speaks their language)



## **Project Goal & Sample Assets**

- Goal: Develop and pilot test an approach capable of efficiently quantifying the future risk of riverine flooding to <u>all</u> 32,000+ MnDOT owned bridges and culverts
- Representative sample of 22 assets selected for pilot testing
  - 6 bridges 💡
  - 🎙 16 culverts 💡



Source: Google Earth

**Exposure Analysis** 

## Precipitation Projections

- Developed projections of 2, 5, 10, 25, 50, 100, 200, and 500-year 24-hour precipitation depths through end-of-century
  - Moderate climate change scenario (RCP 4.5)
  - High climate change scenario (RCP 8.5)



## Peak Flow Projections

- Developed projections of the 2, 5, 10, 25, 50, 100, 200, and 500-year peak flows at each asset for each scenario through end-of-century
- Scaled up (or down) USGS
  StreamStats flow estimates
  based on projected
  precipitation change



Average Drainage Area Precipitation (Inches)



## Hydraulic Analysis

- Used custom-built tools and GIS processes that run HEC-RAS hydraulic software in batch mode for thousands of assets at a time
- Example outputs
  - Upstream water elevations
  - Flow velocities
  - Channel vs. overbank flows



## Exposure Reporting

- Exposure summary tables for each asset showing change in exposure over time under each scenario
- Accompanying GIS data showing flood depths over the road in the vicinity of each asset for each scenario and time period



| C_5722   |                                                                              |         |           |          |            |         |          |  |  |
|----------|------------------------------------------------------------------------------|---------|-----------|----------|------------|---------|----------|--|--|
| Road EL: | Road EL: 1271.258                                                            |         | Crown EL: | 1270.066 | Low Road E |         | 1270.573 |  |  |
| Return   |                                                                              |         | RCP 4.5   |          | RCP 8.5    |         |          |  |  |
| Period   | Current                                                                      | 2039    | 2069      | 2099     | 2039       | 2069    | 2099     |  |  |
| 2        | 1268.93                                                                      | 1269.22 | 1269.49   | 1269.88  | 1269.45    | 1269.97 | 1270.32  |  |  |
| 5        | 1270.65                                                                      | 1270.76 | 1270.85   | 1270.94  | 1270.83    | 1270.98 | 1271.14  |  |  |
| 10       | 1271.35                                                                      | 1271.42 | 1271.48   | 1271.53  | 1271.46    | 1271.56 | 1271.65  |  |  |
| 25       | 1271.99                                                                      | 1272.04 | 1272.08   | 1272.12  | 1272.07    | 1272.15 | 1272.22  |  |  |
| 50       | 1272.40                                                                      | 1272.44 | 1272.48   | 1272.52  | 1272.47    | 1272.53 | 1272.59  |  |  |
| 100      | 1272.77                                                                      | 1272.80 | 1272.83   | 1272.87  | 1272.82    | 1272.88 | 1272.96  |  |  |
| 500      | 1273.25                                                                      | 1273.26 | 1273.27   | 1273.29  | 1273.28    | 1273.29 | 1273.29  |  |  |
| Water A  | Water Above Minimum Bridge Deck Elevation or Road Elevation Above Culvert -> |         |           |          |            |         |          |  |  |

Water Above Bridge Low Chord Elevation or Top of Culvert Elevation ->

Water Above Roadway Sump Elevation ->

Glass-Walling Occuring ->

###

###

**Risk Calculations** 

## Physical Damage Assessment

- Will estimate damage costs at each asset from projected flood events
- Roadway damage model (approaches)
  - Pavement delamination
  - Shortening of pavement life
  - Embankment erosion
- Culvert damage model
  - Loss via embankment erosion
- Bridge damage model
  - Pavement delamination
  - Deck damage/displacement
  - Pier, abutment, & contraction scour



### User Impacts Assessment

- Will estimate costs to the traveling public for detouring around a floodimpacted asset considerate of
  - Traffic volumes
  - Network redundancy
  - Estimated outage durations
  - Time, fuel, & operating costs
- To be implemented through a custom-designed detour routing algorithm run in GIS



## **Estimation of Cumulative Costs**

#### **Exposure Likelihood**



## **Anticipated Outputs**

|       | Moderate Climate Scenario (RCP 4.5) |                                           |                                            |                 | High Climate Scenario (RCP 8.5) |                            |                                           |                                            |                 |               |
|-------|-------------------------------------|-------------------------------------------|--------------------------------------------|-----------------|---------------------------------|----------------------------|-------------------------------------------|--------------------------------------------|-----------------|---------------|
| Asset | Total<br>Costs<br>(Median)          | Total<br>Costs<br>(Lower<br>Conf.<br>Int. | Total<br>Costs<br>(Upper<br>Conf.<br>Int.) | Agency<br>Costs | User<br>Costs                   | Total<br>Costs<br>(Median) | Total<br>Costs<br>(Lower<br>Conf.<br>Int. | Total<br>Costs<br>(Upper<br>Conf.<br>Int.) | Agency<br>Costs | User<br>Costs |
| 1     | \$                                  | \$                                        | \$                                         | \$              | \$                              | \$                         | \$                                        | \$                                         | \$              | \$            |
| 2     | \$                                  | \$                                        | \$                                         | \$              | \$                              | \$                         | \$                                        | \$                                         | \$              | \$            |
|       | \$                                  | \$                                        | \$                                         | \$              | \$                              | \$                         | \$                                        | \$                                         | \$              | \$            |
| N     | \$                                  | \$                                        | \$                                         | \$              | \$                              | \$                         | \$                                        | \$                                         | \$              | \$            |

- Costs can also be disaggregated by year
- To address timing of adaptation needs
  - 1. Select a risk tolerance threshold (acceptable \$ per year)
  - 2. Determine year when each threshold crossed for each climate scenario

### **Contact Information**

### <u>MnDOT</u>

Jeff Meek Sustainability Coordinator 651-366-4263 Jeffrey.Meek@state.mn.us

#### <u>WSP</u>

Chris Dorney Director (Climate, Resilience, & Sustainability) 1703-742-5866 Chris.Dorney@wsp.com